Nested Venn Diagrams
نویسنده
چکیده
Nesting is used to extend Venn Diagrams from their usual practical limit of three or four sets to a form that readily handles five to eight sets. Although devised independently, such nested diagrams can be viewed as the application to Venn Diagrams of an idea proposed in 1896 by Lewis Carroll, in the context of his alternative set diagrams. Such nesting is rarely if ever used today, but has genuine practical value; ironically, it appears to be more useful in the context of the familar Venn Diagram than when applied to Lewis Carroll’s own, less popular, diagrams.
منابع مشابه
New Roses: Simple Symmetric Venn Diagrams with 11 and 13 Curves
A symmetric n-Venn diagram is one that is invariant under n-fold rotation, up to a relabeling of curves. A simple n-Venn diagram is an n-Venn diagram in which at most two curves intersect at any point. In this paper, we introduce a new property of Venn diagrams called crosscut symmetry, which is related to dihedral symmetry. Utilizing a computer search restricted to diagrams with crosscut symme...
متن کاملDrawing Area-Proportional Venn and Euler Diagrams
We consider the problem of drawing Venn diagrams for which each region’s area is proportional to some weight (e.g., population or percentage) assigned to that region. These area-proportional Venn diagrams have an enhanced ability over traditional Venn diagrams to visually convey information about data sets with interacting characteristics. We develop algorithms for drawing area-proportional Ven...
متن کاملProof-Theoretical Investigation of Venn Diagrams: A Logic Translation and Free Rides
In the literature on diagrammatic reasoning, Venn diagrams are abstractly formalized in terms of minimal regions. In view of the cognitive process to recognize Venn diagrams, we modify slightly the formalization by distinguishing conjunctive, negative, and disjunctive regions among possible regions in Venn diagrams. Then we study a logic translation of the Venn diagrammatic system with the aim ...
متن کاملWhich n-Venn diagrams can be drawn with convex k-gons?
We establish a new lower bound for the number of sides required for the component curves of simple Venn diagrams made from polygons. Specifically, for any n-Venn diagram of convex k-gons, we prove that k ≥ (2 − 2 − n)/(n(n − 2)). In the process we prove that Venn diagrams of seven curves, simple or not, cannot be formed from triangles. We then give an example achieving the new lower bound of a ...
متن کاملAnalysis of Venn Diagrams Using Cycles in Graphs
This paper is the last in a series by the authors on the use of graph theory to analyze Venn diagrams on few curves (see [1,2,6,7]). We complete the construction (and hence the enumeration) of spherical Venn diagrams on five curves, which yields additional results about conjectures of Grünbaum concerning which Venn diagrams are convex, which are exposed, and which can be drawn with congruent el...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010